114 research outputs found

    A regression framework to head-circumference delineation from US fetal images

    Get PDF
    Background and Objectives: Measuring head-circumference (HC) length from ultrasound (US) images is a crucial clinical task to assess fetus growth. To lower intra- and inter-operator variability in HC length measuring, several computer-assisted solutions have been proposed in the years. Recently, a large number of deep-learning approaches is addressing the problem of HC delineation through the segmentation of the whole fetal head via convolutional neural networks (CNNs). Since the task is a edge-delineation problem, we propose a different strategy based on regression CNNs. Methods: The proposed framework consists of a region-proposal CNN for head localization and centering, and a regression CNN for accurately delineate the HC. The first CNN is trained exploiting transfer learning, while we propose a training strategy for the regression CNN based on distance fields. Results: The framework was tested on the HC18 Challenge dataset, which consists of 999 training and 335 testing images. A mean absolute difference of 1.90 ( ± 1.76) mm and a Dice similarity coefficient of 97.75 ( ± 1.32) % were achieved, overcoming approaches in the literature. Conclusions: The experimental results showed the effectiveness of the proposed framework, proving its potential in supporting clinicians during the clinical practice

    Effect of Dendritic Side Groups on the Mobility of Modified Poly(epichlorohydrin) Copolymers

    Get PDF
    [EN] The macromolecular dynamics of dendronized copolymer membranes (PECHs), obtained by chemical modification of poly(epichlorohydrin) with the dendron 3,4,5-tris[4-(n-dodecan-1-yloxy)benzyloxy] benzoate, was investigated. In response to a thermal treatment during membrane preparation, these copolymers show an ability to change their shape, achieve orientation, and slightly crystallize, which was also observed by CP-MAS NMR, XRD, and DSC. The phenomenon was deeply analyzed by dielectric thermal analysis. The dielectric spectra show the influence of several factors such as the number of dendritic side groups, the orientation, their self-assembling dendrons, and the molecular mobility. The dielectric spectra present a sub-Tg dielectric relaxation, labelled as gamma, associated with the mobility of the benzyloxy substituent of the dendritic group. This mobility is not related to the percentage of these lateral chains but is somewhat hindered by the orientation of the dendritic groups. Unlike other less complex polymers, the crystallization was dismantled before the appearance of the glass transition (alpha(Tg)). Only after that, clearing transition (alpha(Clear)) can be observed. The PECHs were flexible and offered a high free volume, despite presenting a high degree of modifications. However, the molecular mobility is not independent in each phase and the self-assembling dendrons can be eventually fine-tuned according to the percentage of grafted groups.This research was funded by the Spanish Ministry of Science, Innovation and Universities, grant POLYDECARBOCELL (ENE2017-86711-C3-1-R, ENE2017-86711-C3-3-R).Teruel Juanes, R.; Pascual-Jose, B.; Graf, R.; Reina, JA.; Giamberini, M.; Ribes-Greus, A. (2021). Effect of Dendritic Side Groups on the Mobility of Modified Poly(epichlorohydrin) Copolymers. Polymers. 13(12):1-19. https://doi.org/10.3390/polym13121961119131

    Five decades of terrestrial and freshwater research at Ny-Ålesund, Svalbard

    Get PDF
    For more than five decades, research has been conducted at Ny-Alesund, in Svalbard, Norway, to understand the structure and functioning of High Arctic ecosystems and the profound impacts on them of environmental change. Terrestrial, freshwater, glacial and marine ecosystems are accessible year-round from Ny-Alesund, providing unique opportunities for interdisciplinary observational and experimental studies along physical, chemical, hydrological and climatic gradients. Here, we synthesize terrestrial and freshwater research at Ny-Alesund and review current knowledge of biodiversity patterns, species population dynamics and interactions, ecosystem processes, biogeochemical cycles and anthropogenic impacts. There is now strong evidence of past and ongoing biotic changes caused by climate change, including negative effects on populations of many taxa and impacts of rain-on-snow events across multiple trophic levels. While species-level characteristics and responses are well understood for macro-organisms, major knowledge gaps exist for microbes, invertebrates and ecosystem-level processes. In order to fill current knowledge gaps, we recommend (1) maintaining monitoring efforts, while establishing a longterm ecosystem-based monitoring programme; (2) gaining a mechanistic understanding of environmental change impacts on processes and linkages in food webs; (3) identifying trophic interactions and cascades across ecosystems; and (4) integrating long-term data on microbial, invertebrate and freshwater communities, along with measurements of carbon and nutrient fluxes among soils, atmosphere, freshwaters and the marine environment. The synthesis here shows that the Ny-Alesund study system has the characteristics needed to fill these gaps in knowledge, thereby enhancing our understanding of High-Arctic ecosystems and their responses to environmental variability and change

    Debye-Hueckel solution for steady electro-osmotic flow of a micropolar fluid in a cylindrical microcapillary

    Full text link
    Analytic expressions for the speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting steady, symmetric and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hueckel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. As the aciculate particles in a micropolar fluid can rotate without translation, micropolarity influences fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies as the radius increases. The stress tensor is confined to the region near the wall of the microcapillary but the couple stress tensor is uniform across the cross-section.Comment: 19 page

    Five decades of terrestrial and freshwater research at Ny-Ålesund, Svalbard

    Get PDF
    For more than five decades, research has been conducted at Ny-Ålesund, in Svalbard, Norway, to understand the structure and functioning of High-Arctic ecosystems and the profound impacts on them of environmental change. Terrestrial, freshwater, glacial and marine ecosystems are accessible year-round from Ny-Ålesund, providing unique opportunities for interdisciplinary observational and experimental studies along physical, chemical, hydrological and climatic gradients. Here, we synthesize terrestrial and freshwater research at Ny-Ålesund and review current knowledge of biodiversity patterns, species population dynamics and interactions, ecosystem processes, biogeochemical cycles and anthropogenic impacts. There is now strong evidence of past and ongoing biotic changes caused by climate change, including negative effects on populations of many taxa and impacts of rain-on-snow events across multiple trophic levels. While species-level characteristics and responses are well understood for macro-organisms, major knowledge gaps exist for microbes, invertebrates and ecosystem-level processes. In order to fill current knowledge gaps, we recommend (1) maintaining monitoring efforts, while establishing a long-term ecosystem-based monitoring programme; (2) gaining a mechanistic understanding of environmental change impacts on processes and linkages in food webs; (3) identifying trophic interactions and cascades across ecosystems; and (4) integrating long-term data on microbial, invertebrate and freshwater communities, along with measurements of carbon and nutrient fluxes among soils, atmosphere, freshwaters and the marine environment. The synthesis here shows that the Ny-Ålesund study system has the characteristics needed to fill these gaps in knowledge, thereby enhancing our understanding of High-Arctic ecosystems and their responses to environmental variability and change

    Finding the essential : improving conservation monitoring across scales

    Get PDF
    To account for progress towards conservation targets, monitoring systems should capture not only information on biodiversity but also knowledge on the dynamics of ecological processes and the related effects on human well-being. Protected areas represent complex social-ecological systems with strong human-nature interactions. They are able to provide relevant information about how global and local scale drivers (e.g., climate change, land use change) impact biodiversity and ecosystem services. Here we develop a framework that uses an ecosystem-focused approach to support managers in identifying essential variables in an integrated and scalable approach. We advocate that this approach can complement current essential variable developments, by allowing conservation managers to draw on system-level knowledge and theory of biodiversity and ecosystems to identify locally important variables that meet the local or sub-global needs for conservation data. This requires the development of system narratives and causal diagrams that pinpoints the social-ecological variables that represent the state and drivers of the different components, and their relationships. We describe a scalable framework that builds on system based narratives to describe all system components, the models used to represent them and the data needed. Considering the global distribution of protected areas, with an investment in standards, transparency, and on active data mobilisation strategies for essential variables, these have the potential to be the backbone of global biodiversity monitoring, benefiting countries, biodiversity observation networks and the global biodiversity community

    Five decades of terrestrial and freshwater research at Ny-Ålesund, Svalbard

    Get PDF
    For more than five decades, research has been conducted at Ny-Ålesund, in Svalbard, Norway, to understand the structure and functioning of High-Arctic ecosystems and the profound impacts on them of environmental change. Terrestrial, freshwater, glacial and marine ecosystems are accessible year-round from Ny-Ålesund, providing unique opportunities for interdisciplinary observational and experimental studies along physical, chemical, hydrological and climatic gradients. Here, we synthesize terrestrial and freshwater research at Ny-Ålesund and review current knowledge of biodiversity patterns, species population dynamics and interactions, ecosystem processes, biogeochemical cycles and anthropogenic impacts. There is now strong evidence of past and ongoing biotic changes caused by climate change, including negative effects on populations of many taxa and impacts of rain-on-snow events across multiple trophic levels. While species-level characteristics and responses are well understood for macro-organisms, major knowledge gaps exist for microbes, invertebrates and ecosystem-level processes. In order to fill current knowledge gaps, we recommend (1) maintaining monitoring efforts, while establishing a long-term ecosystem-based monitoring programme; (2) gaining a mechanistic understanding of environmental change impacts on processes and linkages in food webs; (3) identifying trophic interactions and cascades across ecosystems; and (4) integrating long-term data on microbial, invertebrate and freshwater communities, along with measurements of carbon and nutrient fluxes among soils, atmosphere, freshwaters and the marine environment. The synthesis here shows that the Ny-Ålesund study system has the characteristics needed to fill these gaps in knowledge, thereby enhancing our understanding of High-Arctic ecosystems and their responses to environmental variability and change

    Hybrid organic-inorganic UV-cured films containing liquid-crystalline units

    No full text
    Hybrid organic-inorganic films have been prepared through a dual-cure process, involving photopolymerization (UV-curing) of a methacrylic resin and hydrolysis/condensation of alkoxysilane groups, in the presence of three different liquid crystalline oligomers bearing acrylic reactive groups and synthesized on purpose. These UV-curable mixtures have been coated on glass substrates, exposed to UV radiation in inert (nitrogen) atmosphere, then thermally treated in order to promote the occurrence of the sol-gel reaction and finally peeled off from the substrate. The morphology of the obtained films has been investigated by means of scanning electron microscopy, environmental scanning electron microscopy and atomic force microscopy measurements. Significant silica enrichment on the "gas side" of the films (i.e. the side exposed to the UV radiation) has been found, as well as the occurrence of the formation of interesting silica conical shapes on the same side with respect to the glass counterpart. Because of the constraints exerted by the inorganic domains on the mobility of the polymer chains, the Tg values of the obtained networks have been found to increase in the presence of the silica phases, which also might have contributed to the occurrence of segregation phenomena of the liquid crystalline phase

    Liquid Crystal Epoxy Resins

    No full text
    Liquid Crystalline Epoxy Resins (LCER) have been extensively studied in recent years, due to their challenging structures and properties. This class of materials is able to develop an ordered structure upon curing, which is then stabilized by crosslinks. From this structure, remarkable properties, such as higher fracture toughness, optical behaviour and adhesion result
    corecore